Pascal's Triangle - Number Pattern Investigation

Aim:

To identify the *beautiful* number patterns associated with Pascal's triangle.

Student response to this investigation:

"Wow – Pascal's triangle is like a cheat sheet for patterns" Jake April 2023

Part A: Binomial Expansion

Expand and simplify the following

 $(x+1)^0$

 $(x + 1)^1$

 $(x + 1)^2$

 $(x + 1)^3$

 $(x + 1)^4$

Part A: Summary

$(x + 1)^0$	
$(x + 1)^1$	
$(x + 1)^2$	
$(x + 1)^3$	
$(x+1)^4$	

Part B: Pascal's Triangle

- 1. Fill in the blank triangle handout
- 2. Comment on the **symmetry**
- 3. Number each row the first row is "0"
- 4. Binomial Expansion: What do you observe as you look back at Part A?

5. Add up each row. – Exponential growth 2^x

- a. Write this next to each row.
- b. What do you notice?
- c. Write the simplified version next to each addition

6. Powers of 11

a. Use a calculator to list the powers of 11

b. What do you notice?

11⁰

- 11^{1}
- 11²
- 11³
- 11⁴
- ---
- 11⁵
- 11⁶
- 11⁷

c. Oops what happened at 5?

d. And 6?

(More help: https://www.mathsisfun.com/pascalstriangle.html)

Part C: Odds and Evens

- 7. Colour every odd number on a *new pre-filled triangle* (with at least 15 rows). Your teacher will hand you this.
- 8. What do you notice? (Fractals)

Part D: Diagonals

You will need a new triangle and 4 contrasting colours for this

- 9. Triangular numbers explore with "dots"
 - a. Draw the first 5 triangular numbers as equilateral triangles

- b. Write the 'number sentence' next to each triangular number drawing
- c. What is a triangular number?
- d. Draw these first 5 triangular numbers again as right-angled triangles

- 10. If *n* is the number of dots on the base of the triangle identify a rule to work out triangular numbers. (hint: think about area of rectangles)
- 11. Use your rule to list the next 3 triangular numbers

12. Triangular number summary

1	2	3	4	5	6	7	8

13. Colour all of the triangular numbers down the left side of the Pascals triangle in the same colour

14. Colour all of **the 1's** down the left side in another colour

15. Colour the **counting numbers** down the left side in another colour

16. Tetrahedron Numbers – stacking balls

(Triangular numbers in 3D)

a. Fill in the table

N (height)	Triangular number (number of balls in each layer)	Tetrahedron Number (Total balls)
1	1	1
2	3	4

b. Colour the Tetrahedron numbers in another colour

Part E: Square Numbers

- 17. Consider the square numbers and identify the pattern in the triangle
 - a. Fill in the rest of the table
 - b. On a new triangle colour in such a way to highlight some examples

Part F: Fibonacci Numbers

Look up the Fibonacci Sequence of numbers and identify where they appear on the triangle

2 ²	1+3	= 4
3 ²	3 + 6	= 9
4 ²	6 + 10	= 16

Part G: Probability

Toss a coin once; twice; three times; four times – list the number of outcomes (grouped in like groups)

Number of tosses of a coin	Possible outcomes (grouped in like groups)	Pascal's triangle

Pascal's Triangle

Blank

